A Uniqueness Theorem for Entire Functions

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Theorem on Entire Functions

Let G(k) = ∫ 1 0 g(x)e kxdx, g ∈ L1(0, 1). The main result of this paper is the following theorem. THEOREM 1. There exists g 6≡ 0, g ∈ C∞ 0 (0, 1), such that G(kj) = 0, kj < kj+1, limj→∞ kj =∞, limk→∞ |G(k)| does not exist, lim supk→+∞ |G(k)| = ∞. This g oscillates infinitely often in any interval [1− δ, 1], however small δ > 0 is. MSC: 30D15, 42A38, 42A63

متن کامل

A Landing Theorem for Dynamic Rays of Subhyperbolic Entire Functions

Let f be a subhyperbolic entire transcendental function of finite order and let z0 be a repelling periodic point of f . We show that there exists at least one dynamic ray (injective curve to ∞ consisting of escaping points) that lands at z0. In fact, our result holds more generally, namely for any subhyperbolic entire function f for which each periodic address is realised by some dynamic ray in...

متن کامل

Uniqueness Theorems of Difference Operator on Entire Functions

A function f(z) is called meromorphic, if it is analytic in the complex plane except at poles. It is assumed that the reader is familiar with the standard symbols and fundamental results of Nevanlinna theory such as the characteristic function T(r, f), and proximity function m(r, f), counting function N(r, f) (see [1, 2]). In addition we use S(r, f) denotes any quantity that satisfies the condi...

متن کامل

Further Results on Uniqueness of Entire Functions Sharing One Value

In this paper, we study the uniqueness problems of entire functions sharing one value with weight l (l = 0,1,2). The results in this paper improve the related results given by X.Y. Zhang and W.C. Lin, M.L. Fang, C.C. Yang and X.H. Hua, etc.

متن کامل

Uniqueness of Entire Functions Sharing Polynomials with Their Derivatives

and Applied Analysis 3 From the ideas of Theorem D to Theorem F, it is natural to ask whether the values a, b in Theorem C can be replaced by two polynomials Q1, Q2. The main purpose of this paper is to investigate this problem. We prove the following result. Theorem 1.2. Let Q1 z a1z a1,p−1zp−1 · · · a1,0 and Q2 z a2z a2,p−1zp−1 · · · a2,0 be two polynomials such that degQ1 z degQ2 z p (where ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1965

ISSN: 0002-9939

DOI: 10.2307/2034002